SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways.

نویسنده

  • Marko Djordjevic
چکیده

Systematic Evolution of Ligands by EXponential enrichment (SELEX) is an experimental procedure that allows extraction, from an initially random pool of oligonucleotides, of the oligomers with a desired binding affinity for a given molecular target. The procedure can be used to infer the strongest binders for a given DNA or RNA binding protein, and the highest affinity binding sequences isolated through SELEX can have numerous research, diagnostic and therapeutic applications. Recently, important new modifications of the SELEX protocol have been proposed. In particular, a modification of the standard SELEX procedure allows generating a dataset from which protein-DNA interaction parameters can be determined with unprecedented accuracy. Another variant of SELEX allows investigating interactions of a protein with nucleic-acid fragments derived from the entire genome of an organism. We review here different SELEX-based methods, with particular emphasis on the experimental design and on the applications aimed at inferring protein-DNA interactions. In addition to the experimental issues, we also review relevant methods of data analysis, as well as theoretical modeling of SELEX.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scenario and future prospects of microRNAs in gastric cancer: A review

Carcinoma of the stomach is one of the major prevalent and principal causes of cancer-related deaths worldwide. Current advancement in technology has improved the understanding of the pathogenesis and pathology of gastric cancers (GC). But, high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate novel early diagnostic/prognostic m...

متن کامل

Inferring Regulatory Systems with Noisy Pathway Information

With increasing number of pathways available in public databases, the process of inferring gene regulatory networks becomes more and more feasible. The major problem of most of these pathways is that they are very often faulty or describe only parts of a regulatory system due to limitations of the experimental techniques or due to a focus specifically only on a subnetwork of a larger process. T...

متن کامل

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Using sequence logos and information analysis of Lrp DNA binding sites to investigate discrepancies between natural selection and SELEX.

In vitro experiments that characterize DNA-protein interactions by artificial selection, such as SELEX,are often performed with the assumption that the experimental conditions are equivalent to natural ones. To test whether SELEX gives natural results, we compared sequence logos composed from naturally occurring leucine-responsive regulatory protein (Lrp) binding sites with those composed from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomolecular engineering

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2007